

DPP – 9 (Kinematics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/41

Video Solution on YouTube:-

https://youtu.be/csSSyQRjWeY

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/85

- A man standing on a road hold his umbrella at 30° with the vertical to keep the rain Q 1. away. He throws the umbrella and starts running at 10 km/hr. He finds that raindrops are hitting his head vertically, the speed of raindrops with respect to the road will be:
 - (a) $10 \, km/hr$

(b) $20 \, km/hr$

(c) $30 \, km/hr$

- (d) $40 \, km/hr$
- Rain is falling with a speed of $12\sqrt{2}$ m/s at angle of 45° with the vertical line. A man Q 2. in glider going at a speed of u at an angle of 370 with respect to the ground. Find the speed of the glider so that rain appears to him falling vertically. Consider the motion of the glider and rain drops in the same vertical plane:

(a) $15 \, m/s$

(b) $30 \, m/s$

(c) $10 \, m/s$

- (d) $20 \, m/s$
- A man is walking due east at the rate of 2 km/h. The rain appears to him to come down Q 3. vertically at the rate of 2 km/h. The actual velocity and angle through which rain is falling with the vertical respectively are
 - (a) $2\sqrt{2} \, km/h$, 45° (c) $2 \, km/h$, 0°
- (b) $\frac{1}{\sqrt{2}} km/h$, 30° (d) 2 km/h, 90°

- When a man moves down the inclined plane with a constant speed 5m/s which makes Q 4. an angle of 37° with the horizontal, he finds that the rain is falling vertically downward. When he moves up the same inclined plane with the same speed, he finds that the rain makes an angle $\theta = \tan^{-1}\left(\frac{7}{8}\right)$ with the horizontal. The speed of the rain is: (a) $\sqrt{116} \ m/s$ (b) $\sqrt{32} \ m/s$

(c) 5 m/s

- (d) $\sqrt{73} \ m/s$
- A stationary person observes that rain is falling vertically down at 30km/hr. A cyclist Q 5. is moving up on an inclined plane making an angle 30° with horizontal at 10km/hr. In what direction should the cyclist hold his umbrella to prevent himself from rain?
 - (a) At an angle $\tan^{-1}\left(\frac{\sqrt{2}}{7}\right)$ with the vertical.

Physicsaholics

- (b) At an angle $\tan^{-1}\left(\frac{\sqrt{3}}{7}\right)$ with the horizontal
- (c) At an angle $\tan^{-1}\left(\frac{\sqrt{3}}{7}\right)$ with the vertical
- (d) At an angle $\tan^{-1}\left(\frac{\sqrt{2}}{7}\right)$ with the horizontal
- Q 6. Rain is falling vertically downwards with a speed of 4 km/h. A girl moves on a straight road with a velocity of 3 km/h. The apparent velocity of rain with respect to the girl is:
 - (a) 3 km/h

(b) 4 km/h

(c) 5 km/h

(d) 7 km/h

- Q 7. A man is cycling at 4 m/s On a horizontal rod. To him, rain appears to fall at 30° from vertical. If he doubles his velocity, rain appears to fall at 60° to vertical. Find the velocity of the rain:
 - (a) 4 m/s

(b) 5 m/s

(c) 6 m/s

- (d) $4\sqrt{3}$ m/s
- Q 8. A man running on a horizontal road at 8 km/h finds the rain falling vertically. He increases his speed to 12 km/h and finds that the drops make angle 30° with the vertical. Angle of velocity of rain with vertical is:

(a) $\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$

(b) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$

(c) $\tan^{-1}\left(\frac{\sqrt{5}}{3}\right)$

- (d) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$
- Q 9. A man holds an umbrella at 30° with the vertical to keep himself dry. Then he runs at a speed of 10 m/s, and find the raindrops to be hitting vertically. Study the following statements and find the correct options:
 - (1) Velocity of rain w.r.t. Earth is 20 m/s
 - (2) Velocity of rain w.r.t, man is $10\sqrt{3}$ m/s
 - (3) Velocity of rain w.r.t. Earth is 30 m/s
 - (4) Velocity of rain w.r.t. man is $10\sqrt{2}$ m/s
 - (a) Statement (2) and (3) are correct.
 - (b) Statement (1) and (2) are correct.
 - (c) Statement (3) and (4) are correct.
 - (d) Statement (2) and (4) are correct.
- Q 10. The path of one projectile as seen from another projectile is a:

(a) Straight line

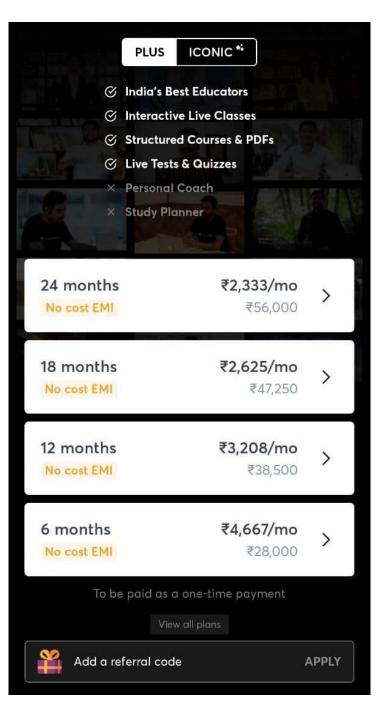
(b) Parabola

(c) Hyperbola

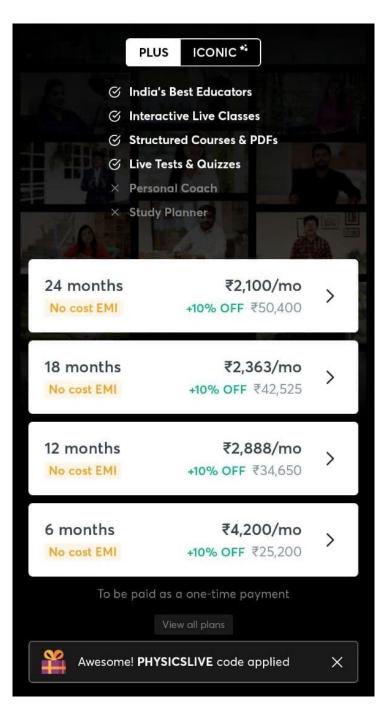
(d) Circle

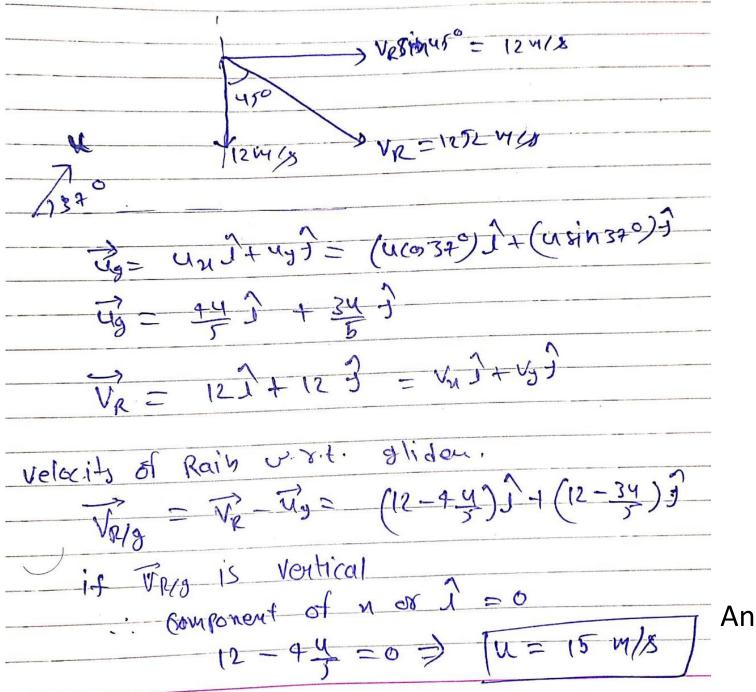
Answer Key

Q.1) b	Q.2) a	Q.3) a	Q.4) b	Q.5) c



P hysicsaholics


Q.6) c Q.7) a	Q.8) a	Q.9) b	Q.10) a
---------------	--------	--------	---------


Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

Written Solution

DPP-9 Relative motion (Rain-Man problems) By Physicsaholics Team

Solution.1					
	-NB SIN30				
	NE 1300 VRC03300				
	The state of the s				
	it main drops are falling ventically				
	w.r.f. vian				
	then; relative velocity in mosizontal				
	dinn = 0				
	- Vman = VR SIN30°				
	- Vman - 1				
	10 = VR(1)				
	VR = 20 1cm/thr Ans.b				
	1 VK - 20 (1 1/10)				

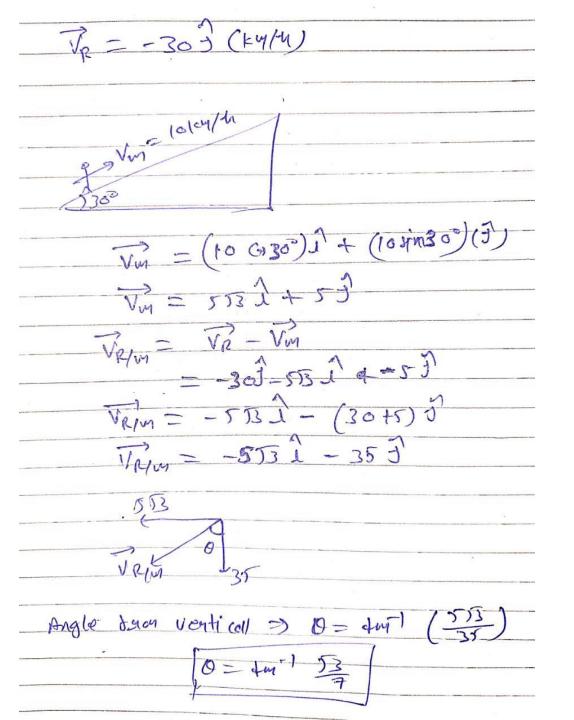
Ans.a

Velocity of man work ground

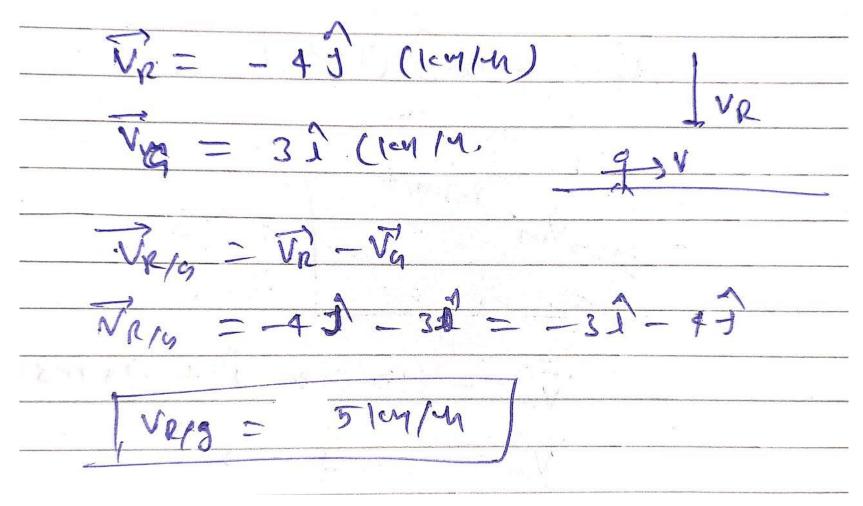
$$\frac{1}{\sqrt{N}} = \sqrt{1} = 2 \log h (1)$$
Velocity of Rain work man

$$\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} = 2 \log h (2)$$
Velocity of Rain work man

$$\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} = 2 \log h (2)$$


$$\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} = 2 \log h (2)$$

$$\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} =$$


Ans.a

when moving down to incline: Solution.4 501/x = Vm 2 2 2 5 5 5 0 0 Vm = Vm sin 50 (-1) + Vm (05 13° (-1) Vm = 581413°(-1) + 5 (015°(-5) Vm = -42 - 33 Let velocits of Rain with ground Ty - Vyl+ VyT it man observes main fulling vertical 1. selative relocity of brain with may VR/M = (V1-(-4)) + (Vy-(-3))) in N-dist or Voice = 0

when going up to incline Von=5m/3 Vm = 5 (337°) + 5 sin 5 7° 9 Vm = 41 +33 VR = VnJ + Vg J Vo = -41+ Vy7 VP/m = (-4-4) + (Vy-3) 7 Vy-3=-7 => Vy=-2 M/8 Ve= VNJ + Vy J = 532 V= 532 m/s | Ans.b

Ans.c

Ans.c

$$\overrightarrow{V_{Y,g}} = \overset{V_1}{\longleftarrow} \overset{\longleftarrow}{\bigvee}_{V_2}$$

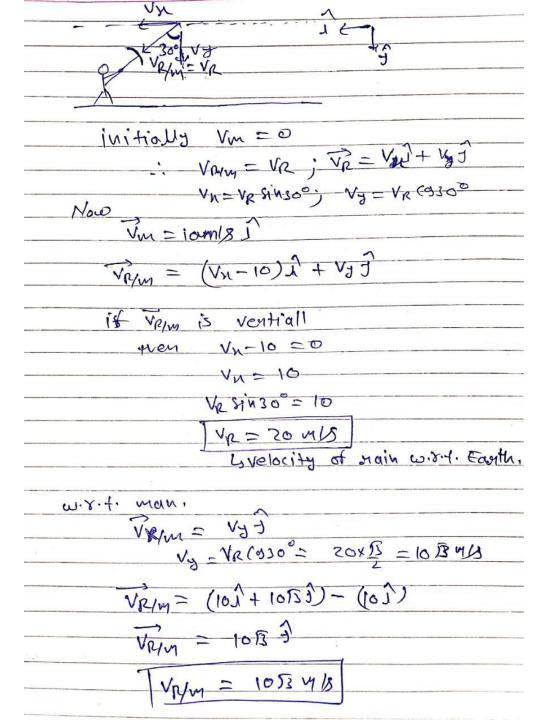
)
$$\sqrt{m_{ij}}$$
 (Initial) = $\frac{4m_{sec}}{}$

Initial World of rain w.r.t. man

$$V_1 + 4$$
 V_2
 $V_3 = V_1 + 4$
 V_2
 V_3

$$\tan 30 = \frac{V_1 + 4}{V_2} = \frac{1}{V_3}$$

$$tan (0) = \frac{V_1 + 8}{V_2} = \sqrt{3}$$


final
$$V_1$$
 V_2 V_3

$$\Rightarrow \frac{V_1+4}{V_1+8} = \frac{1}{3} \Rightarrow 3V_1+12 = V_1+8 \Rightarrow 2V_1 = -4 \Rightarrow V_1 = -2$$

$$V_2 = \sqrt{3}(V_1 + 4) = 2\sqrt{3} \Rightarrow |V_3\rangle = \sqrt{V_1^2 + V_2^2} = 4 \text{ m/s}$$

$$V_R = 4 \text{ m/s}$$
Ans.a

Ans.a

Ans.b

Solution.10 LPS THE = (UA COSX) I + (UA SIND- BY) VB = (UB (BB) I + (UB SINB-9+)] (UA (BX - UB (BB)) + (4 B SINX - UB SINB)) (onstend Ans.a .: Path - Straight line

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/41

Video Solution on YouTube:-

https://youtu.be/csSSyQRjWeY

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/85

@<u>IITJEE_Physics</u> <u>physicsaholics.com</u>

Unacademy

CUSIS NIKIS